Deliberative thinking in discrete choice experiments

A theoretical and empirical investigation

D.A. $Regier^1$ J. $Sicsic^2$ V. $Watson^3$

¹Canadian Centre for Applied Research in Cancer Control (ARCC) Cancer Control Research, BC Cancer School of Population and Public Health, UBC

²LIRAES, University Paris Descartes

³Health Economics Research Unit University of Aberdeen

NOAHE Rounds, Feb 21 2018 Twitter @deanregier Deliberative thinking in discrete choice experiments

> D.A. Regier, J. Sicsic, V. Watson

Introduction

D.A. Regier, J. Sicsic, V. Watson

Introduction

- Resource allocation requires individuals preferences
 - Stated preferences methods when no market data available
- Discrete choice experiments (DCE)
 - Simulates market conditions and generates choice
 - ► Framework consistent with microeconomic utility theory (Lancaster, 1966, McFadden, 1974)

- Resource allocation requires individuals preferences
 - Stated preferences methods when no market data available
- Discrete choice experiments (DCE)
 - Simulates market conditions and generates choice
 - ► Framework consistent with microeconomic utility theory (Lancaster, 1966, McFadden, 1974)
- A criticism: responses may differ from people's real choices → hypothetical bias problem (Blumenschein et al, 2001)

Ex-ante survey designs

- Origin: contingent valuation method (CVM)
 - 1. Emphasize consequentiality of the choices (Loomis, 2014)
 - 2. "Oath statements" (Jacquement et al, 2013)
 - 3. "Cheap talk" (Morrison and Brown, 2009)

Ex-post calibration with **certainty scales**

- Focus of our study
- Assumption: Respondents who state they are certain about their choices (certainty 8 on a 0 to 10 scale):
 - 1. Are more engaged \Rightarrow more consistent in their choices
 - 2. Are less subject to hypothetical bias (Ready et al, 2010)

Illustration of a post-choice certainty scale

▶ Regier et al (2014). J Behav Exp Econ

Characteristics	Scenario A	Scenario B		
Drug treatment	Doctor or nurse managed I.V. one day per month	Self or parent managed injection four days per month		
Child reported pain from arthritis	Moderate	None		
Side-effects	Nausea four days per month	Headache four days per month		
Participation in daily activities	With some difficulty	With much difficulty		
Days missed from school	Two days per month	Half-a-day per month		
Cost to you	\$50 per month	\$2100 per month		

Which would you choose?		□ Scenario /	Д	□ Scenario B		
How certain are	you?					
Very uncertain 0 Uncertain	Somewhat uncertain	Neither certain nor uncertain	Somewhat certain	Certain	Very certain	

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

Introduction

ne two ca tudies

ramework
Empirical testing

Alternative ex-pos

Literature review

- Certainty scales are used in two ways :
 - 1. By re-coding uncertain responses (Li and Mattsson, 1995)
 - 2. By re-weighting data to favor more certain responses

CVM:

▶ Both strategies are effective to reduce the hypothetical bias (Murphy et al, 2005)

DCE:

- Mixed evidence (Ready et al 2010, Beck et al 2016)
- Currently no theoretical framework

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

Introduction

The two case studies

heoretical ramework Empirical testing

Alternative ex-post calibrations

Aims and contributions

- 1. Propose a new theoretical framework:
 - ► To identify engaged respondents in DCE tasks
 - Central role of choice certainty variability
 - ► Taxonomy of choice certainty related to *dual processing theories* (using a set of testable assumptions)

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

Introduction

The two case studies

ramework
Empirical testing

Alternative ex-pos

Aims and contributions

- 1. Propose a new theoretical framework :
 - ► To identify engaged respondents in DCE tasks
 - Central role of choice certainty variability
 - ► Taxonomy of choice certainty related to *dual processing theories* (using a set of testable assumptions)
- 2. Results are consistent with theoretical predictions
- 3. Alternative ex-post calibration strategies are proposed

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

Introduction

The two case studies

ramework
Empirical testing

Alternative ex-pos

Outline

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

Introduction

The two case studies

amework

Alternative ex-pos

Conclusion

The two case studies

Theoretical framework Empirical testing

Alternative ex-post calibrations

Outline

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

Introduction

The two case studies

ramework

mpirical testing

Alternative ex-post calibrations

Conclusion

The two case studies

Theoretical framework Empirical testing

Alternative ex-post calibrations

- 1. DCE eliciting women's preferences for breast cancer screening (Sicsic et al, 2018)
- 2. DCE eliciting citizens's preferences for the return of incidental genomic findings (Regier et al, 2015)

Summary of the two case studies

Characteristics	Case study 1	Case study 2
Setting	France	Canada
Topic	Breast cancer screening	Genomic sequencing
Language	French	English / French
Respondents	Women (age 40-74 years)	Citizens (age 18+ years)
Sample size	812	1200
Choice tasks per respondent	8 (+1)	16
Response certainty scale	0 to 10	0 to 10
Response time	yes	yes
Monotonicity test	yes	no

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic. V Watson

The two case studies

The two case studies

Case study 1

Example of a breast cancer screening DCE choice task (case study 1)

	Screening option A	Screening option B	No screening option
BC mortality	10	25	30
False-positive	200	50	0
Overdiagnosis	150	10	0
Type of screening referral	invitation letter	your doctor	none
Travel time	10 min	90 min	0 min
Number of tests	18	12	0
Out-of-pocket cost	€ 60	€ 30	€0
Which option would you choose ?			

	0 - vous n'êtes pas du tout sûre de votre choix	1	2	3	4	5	6	7	8	9	10 - vous êtes parfaitement certaine de votre choix
--	---	---	---	---	---	---	---	---	---	---	---

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

The two case studies

Theoretical

Alternative ex-pos

The two case studies

Case study 2

Example of return of genomic information DCE choice task (case study 2)

	Option A	OptionB	Noinformation
Disease Risk More diseases will be identified if the lifetime risk is lower	Diseases with a 5% lifetime risk or higher	Diseases with a 90% lifetime risk or higher	No information
Disease Treatability	Recommended effective medical treatment only	Recommended effective lifestyle change only	No information
Disease Severity Health consequences of the diseases you may develop	Very severe health consequences	Severe health consequences	No information
Carrier Status Disease risk not affecting you but can affect your family	Does not provide information on carrier status	Information on if your family members could be affected	No information
Cost to you	\$1500	\$750	\$0
	Option A 🗆	Option B 🗆	No Information 🗆

How certain are you?

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

The two case studies

neoretical ramework

Alternative ex-post calibrations

Outline

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

The two case studies

Theoretical framework

mpirical testing

Alternative ex-post

Conclusion

The two case studies

Theoretical framework

Empirical testing

Alternative ex-post calibrations

Empirical testing

Alternative ex-post alibrations

Conclusion

Choice certainty and task complexity

- ► In DCE, response certainty is related to choice task complexity (Olsen et al, 2011)
- ► Task complexity is proxied by the utility difference between alternatives in a choice task (Regier et al, 2014)
 - ► Alternatives that provide similar utility to respondents are <u>hard</u> to distinguish ⇒ certainty \(\sqrt{} \)
 - ► Alternatives that provide very different utilities to respondents are <u>easy</u> to distinguish ⇒ certainty /
- Because task complexity varies in a DCE, we posit that engaged respondents should vary in their certainty

- 1. Respondents who make intuitive choices without much thought (*System 1*)
 - Experience computational limitations

 → decision heuristics and errors of intuition (Simon, 1979):
- 2. Respondents using deliberative thinking (System 2)
 - They make rational choices based on all of the information available (Kahneman, 2003)

Theoretical implications

- Only System 2 respondents experience task complexity
- Their level of certainty should vary during the DCE as a result of varying task complexity

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

The two case studies

Theoretical framework

Empirical testing

Alternative ex-post calibrations

mpirical testin

Alternative ex-post

Conclusion

Assumptions to be tested

- ▶ H1 Engaged respondents should be on average sufficiently certain of their choices
 - ► Rational: certain respondents offer more consistent choices (Becker et al, 2013; Dekker et al, 2016)
- ► **H2** In DCE, only individuals with sufficient certainty variability use rational (deliberative) decision-making
 - Corollary: Respondents who are always certain are more likely to make quick and intuitive choices

Taxonomy of choice certainty

	Choice co	ertainty	Assumptions		
Group label	Mean	SD	Engagement in deliberative thinking	Data quality	
Constantly uncertain (CU)	<=6	< ouncertain	low	low	
Variably uncertain (VU)	<=6	$>= \sigma_{\text{uncertain}}$	low/moderate	low/moderate	
Constantly hesitant (CH)]6;8]	< ohesitant	low	low	
Variably hesitant (VH)]6;8]	>= \sigma_hesitant	high	high	
Constantly certain (CC)	>8	< ocertain	low	low	
Variably certain (VC)	>8	>= σ _{certain}	high	high	

Note: σ denotes the mean certainty standard deviation of a class. For instance, $\sigma_{uncertain}$ is the mean SD of the *uncertain* class.

- ► H1 "Engaged respondents should be **on average** sufficiently certain of their choices"
 - It excludes the two uncertain groups (CU and VU)
- ► **H2** "Only individuals with sufficient certainty variability use rational (deliberative) decision-making"
 - Further excludes the CH and CC groups

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

rne two ca tudies

Theoretical framework

Alternative ex-posi

Descriptive statistics

Certainty group	Case s (Breas	tudy 1 t cancer screening)	Case study 2 (Genomic sequencing)		
	N	%	N	%	
Constantly uncertain (CU)	113	13.9%	126	10.5%	
Variably uncertain (VU)	78	9.6%	94	7.8%	
Constantly hesitant (CH)	179	22.0%	290	24.2%	
Variably hesitant (VH)	145	17.9%	215	17.9%	
Constantly certain (CC)	166	20.4%	264	22.0%	
Variably certain (VC)	131	16.2%	211	17.6%	
Overall	812	100%	1200	100%	

- Similar certainty distribution in case studies 1 and 2
 - ► The variably uncertain (VU) group has lowest sample size
 - ► The constantly hesitant (CH) group has highest sample size

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

ne two ci tudies

Theoretical framework

alibrations

Set of testable conjectures

- Deliberative thinking can not be inferred from the data:
 - Assumptions tested based on 5 conjectures

Theoretical concept	Conjecture	Data quality indicators
1. Decision heuristics	The CU, CH and CC groups are more likely to use decision heuristics	(i) serial non-trading behaviour (ii) serial non-demanding behaviour
2. Monotonicity of preferences	The VH and VC groups have monotonic preferences more often	Ability to select a dominant alternative (with better attribute levels) in a specific choice task
3. Considered choices	The VH and VC groups offer more considered choices	(i) median response time (ii) % of "speeders" (RT<10 min)
4. Logical consistency	The choices of the VH and VC groups exhibit higher logical consistency	Number and % of preferene parameters in line with a priori assumptions
5. Choice consistency	The choices of the VH and VC groups exhibit higher choice consistency	Error variance in heteroskedastic multinomial logit models

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

itroduction

he two cas udies

Theoretical framework

inpirical testing

Conjecture 1 (decision heuristics)

		Serial n	on-tra	ders	Serial non-demanders				
Certainty group	Case study 1		Case study 2		Case	study 1	Case study 2		
	N	%	N	%	N	%	N	%	
Constantly uncertain (CU)	12	10,2%	0	0,0%	6	5,3%	27	21,4%	
Variably uncertain (VU)	4	5,1%	0	0,0%	1	1,3%	5	5,3%	
Constantly hesitant (CH)	8	4,5%	2	0.93%	12	6,7%	25	8,6%	
Variably hesitant (VH)	1	0,7%	1	0.34%	1	0,7%	5	2,3%	
Constantly certain (CC)	1	0,6%	1	0.38%	29	17,5%	135	51,1%	
Variably certain (VC)	1	0,8%	0	0,0%	1	0,8%	23	10,9%	
Chi square test (p-value)	p<0.0	0001			p<0.0	0001	p<0.0	0001	
Total	27	3,3%	4	0.3%	50	6,2%	220	18,3%	

ightharpoonup The results provide empirical support for conjecture 1 \square

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

ne two ca :udies

amework

Empirical testing

Alternative ex-posi calibrations

Conjectures 2, 3 and 4

	Mono	jecture 2. tonicity of ferences		Conjecture 3. Response time					Conjecture 4. Logical consistency		
Certainty group	Case study 1		Case study 1		Case study 2		Case study 1		Case study 2		
	N	%	Median	% speeder	Median	% speeder	N	%	N	%	
Constantly uncertain (CU)	77	68.1%	12.8	27.4%	12.8	23,0%	4/8	50%	7/10	70%	
Variably uncertain (VU)	68	87.2%	15.6	16.7%	15.4	22.3%	5/8	63%	8/10	80%	
Constantly hesitant (CH)	147	68.1%	14.1	21.8%	14.8	18.9%	7/8	88%	9/10	90%	
Variably hesitant (VH)	131	90.3%	16.3	8.9%	16.1	15.8%	8/8	100%	10/10	100%	
Constantly certain (CC)	127	76.5%	13.9	16.7%	13.8	18.9%	5/8	63%	8/10	80%	
Variably certain (VC)	124	94.7%	15.8	9.2%	17.2	11.8%	8/8	100%	9/10	90%	
P-value of independence test	p<0.0	001°	p<0.000	p<0.0001 p<0.0001° p<0.0001p=0.080°					-		
Total	674	83,0%	14.8	16.8%	15.1	17.8%	8/8	100%	11/11	100%	

- ▶ Study 1: empirical support for conjecture 2 □
- \blacktriangleright Studies 1/2: empirical support for conjectures 3 and 4 \Box

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

tudies

amework

Empirical testing

calibrations

Conjecture 5 (choice consistency)

Results of Heteroscedastic Multinomial Logit Models (Case study 1)

	HMN	IL 1	HMN	L 2	HMNL 3		
Scale function parameters	Estimate	(SE)	Estimate	(SE)	Estimate	(SE)	
Constantly uncertain (CU)	-0.233*	(0.137)	-	-	-	-	
Variably uncertain (VU)	-0.121	(0.139)	-	-	-	-	
Constantly hesitant (CH)	rej	f	-	-	-	-	
Variably hesitant (VH)	0.277***	(0.098)	-	-	-	-	
Constantly certain (CC)	-0.504***	(0.184)	-	-	-	-	
Variably certain (VC)	0.508***	(0.095)	-	-	-	-	
Mean certainty	-	-	0.048	(0.030)	0.068**	(0.031)	
SD certainty	-	-	0.301***	(0.062)	0.325***	(0.075)	
Mean certainty*SD certainty	-	-	-	-	0.211***	(0.049)	
# choice observations	649	6496		96	6496		
# respondents	81	812		812		812	
Log-Likelihood	-5855.	2717	-5906.	5256	-5848.2509		

▶ Heteroskedastic MNL: scale / ⇒ choice consistency /

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

ie two cas idies

ramework

Empirical testing

calibrations

Conjecture 5 (choice consistency)

Results of Heteroscedastic Multinomial Logit Models (Case study 1)

	HMN	HMNL 2		HMNL 3		
Scale function parameters	Estimate	(SE)	Estimate	(SE)	Estimate	(SE)
Constantly uncertain (CU)	-0.233*	(0.137)	-	-	-	-
Variably uncertain (VU)	-0.121	(0.139)	-	-	-	-
Constantly hesitant (CH)	rej	r	-	-	-	-
Variably hesitant (VH)	0.277***	(0.098)	-	-	-	-
Constantly certain (CC)	-0.504***	(0.184)	-	-	-	-
Variably certain (VC)	0.508***	(0.095)	-	-	-	-
Mean certainty	-	-	0.048	(0.030)	0.068**	(0.031)
SD certainty	-	-	0.301***	(0.062)	0.325***	(0.075)
Mean certainty*SD certainty	-	-	-	-	0.211***	(0.049)
# choice observations	649	6	6496		6496	
# respondents	812		812		812	
Log-Likelihood	-5855.	2717	-5906.5256		-5848.2509	

- ► Heteroskedastic MNL: scale \(\simes \) ⇒ choice consistency \(\simes \)
- lacktriangle Results of HMNL1: empirical evidence for conjecture 5 \Box
- $\blacktriangleright \ \ \ \ \, \text{HMNL2/HMNL3:} \ \ \frac{\partial \textit{Consistency}}{\partial \sigma_{\textit{certainty}}} > 0 \,\,, \,\, \frac{\partial^2 \textit{Consistency}}{\partial \mu_{\textit{certainty}}} > 0$

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

dies

amework

Empirical testing

calibrations

Conjecture 5 (choice consistency)

Results of Heteroscedastic Multinomial Logit Models (Case study 2)

	HMNL 1		HMNL 2		HMNL 3		
Scale function parameters	Estimate	(SE)	Estimate	(SE)	Estimate	(SE)	
Constantly uncertain (CU)	0.060	(0.109)	-	-	-	-	
Variably uncertain (VU)	0.018	(0.146)	-	-	-	-	
Constantly hesitant (CH)	re	f	-	-	-	-	
Variably hesitant (VH)	0.226*	(0.136)	-	-	-	-	
Constantly certain (CC)	-0.888**	(0.397)	-	-	-	-	
Variably certain (VC)	0.238***	(0.092)	-	-	-	-	
Mean certainty	-	-	-0.038**	(0.019)	-0.007	(0.022)	
SD certainty	-	-	0.062	(0.049)	0.118**	(0.051)	
Mean certainty*SD certainty	-	-	-	-	0.090***	(0.027)	
# choice observations	192	19200		19200		19200	
# respondents	120	1200		1200		1200	
Log-Likelihood	-19904	-19904,959		-19970,004		-19956,269	

ightharpoonup Results of HMNL1: empirical evidence for conjecture 5 \square

$$\qquad \qquad \textbf{HMNL3:} \ \, \frac{\partial \textit{Consistency}}{\partial \sigma_{\textit{certainty}}} > 0 \, \, , \, \, \frac{\partial^2 \textit{Consistency}}{\partial \mu_{\textit{certainty}} \partial \sigma_{\textit{certainty}}} > 0 \, \,$$

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

ne two cas udies

amework

Empirical testing

Alternative ex-posicalibrations

Outline

The two case studies

Theoretical framework Empirical testing

Alternative ex-post calibrations

Conclusion

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

The two case studies

framework

Empirical testing

Alternative ex-post calibrations

The two case tudies

heoretical amework impirical testing

Alternative ex-post calibrations

- Aim: Design alternative calibration strategies of respondents' choices
- ▶ Using information on choice certainty and *variability* and assess its impact on :
 - 1. The precision of welfare estimates (i.e., WTA/WTP)
 - 2. The accuracy of welfare estimates (does hypothetical bias decrease ?)
- ▶ Problem: we don't observe real WTA/WTP ⇒ we can not assess the extent of hypothetical bias

The two cas tudies

neoretical ramework Empirical testing

Alternative ex-post calibrations

- Aim: Design alternative calibration strategies of respondents' choices
- ▶ Using information on choice certainty and *variability* and assess its impact on :
 - 1. The precision of welfare estimates (i.e., WTA/WTP)
 - 2. The accuracy of welfare estimates (does hypothetical bias decrease ?)
- ▶ Problem: we don't observe real WTA/WTP ⇒ we can not assess the extent of hypothetical bias
- ▶ We posit there is hypothetical bias
 - 1. Thus individuals overestimate their WTA/WTP (Ready et al, 2010, Beck et al, 2016)
 - 2. *Corollary*: any decrease in WTA/WTP estimates ⇒ more plausible welfare estimates

The re-weighting models

➤ The following weights enter the expression of the SLL function of the choice model

$$w_n = 1 \tag{1}$$

$$w_n = \mu_{certainty}$$
 (2)

$$w_n = \sigma_{certainty} \tag{3}$$

$$w_n = \mu_{certainty} \times \sigma_{certainty} \tag{4}$$

▶ The weights are normalized such that : $\sum w_n = N$

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

The two cas studies

ramework
Empirical testing

Alternative ex-post calibrations

Alternative ex-post calibrations

Results: case study 1

Willingness-to-accep	pt	(1) (w _n =1)		(2) (w _n = mean certainty)		(3) (wn= SD certainty)		(4) (wn= mean*SD certainty)	
(WTA)		Estimate	% change	Estimate	% change	Estimate	% change	Estimate	% change
False-positives	Mean	50,27	ref	50,90	1%	42,86	-15%	43,74	-13%
	SE	12,70	ref	12,48	-2%	7,73	-39%	7,55	-41%
	95%CI	(25.38-75.15)	-	(26.45-75.35)		(27.71-58.01))	(28.94-58.55)	
Overdiagnosis	Mean	14,01	ref	14,31	2%	13,12	-6%	13,45	-4%
	SE	0,61	ref	0,60	-1%	0,49	-20%	0,47	-23%
	95%CI	(12.82-15.20)	-	(13.13-15.49)		(12.17-14.07))	(12.53-14.37)	
Tavel time	Mean	19,95	ref	20,55	3%	18,43	-8%	18,73	-6%
	SE	2,61	ref	2,67	2%	1,91	-27%	1,84	-29%
	95%CI	(14.83-25.08)	-	(15.31-25.79)		(14.69-22.17))	(15.11-22.34)	
Screenig tests	Mean	9,89	ref	10,37	5%	6,38	-35%	6,38	-35%
	SE	4,84	ref	5,11	6%	1,61	-67%	1,50	-69%
	95%CI	(0.40-19.38)	-	(0.35-20.39)		(3.22-9.53)		(3.44-9.33)	
# observations		6496		6496		6496		6496	
wSLL		-4687,1293		-4573,6364		-4812,3461		-4707,0675	

▶ In model (2) : higher WTA and higher SEs

▶ In models (3-4) : lower WTA and lower SEs □

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

e two cas Idies

heoretical amework mpirical testing

Alternative ex-post calibrations

Alternative ex-post calibrations

Results: case study 2

Willingness-to-pay		(1) (w _n =1)		(2) (wn= mean certainty)		(3) (wn= SD certainty)		(4) (wn= mean*SD certainty)	
(WTP)		Estimate	% change	Estimate	% change	Estimate	% change	Estimate	% change
WTP carrier status	Mean	390,53	ref	428,44	10%	345,31	-12%	370,37	-5%
	SE	19,4	ref	21,1	9%	18,6	-4%	19,2	-1%
	95%CI	(352.6-428.5)	-	(387.0-469.8)		(308.9-381.7)		(332.5-408.2)	
WTP treat. of the disease	Mean	202,51	ref	227,48	12%	189,71	-6%	207,29	2%
(treatment + lifestyle)	SE	29,4	ref	31,4	7%	28,3	-4%	29,0	-1%
	95%CI	(144.9-260.1)	-	(166.0-288.9)		(134.3-245.1)		(150.5-264.1)	
WTP 40% lifetime risk	Mean	274,95	ref	279,63	2%	243,29	-12%	251,52	-9%
or higher	SE	34,0	ref	36,3	7%	33,0	-3%	33,8	-1%
	95%CI	(208.2-341.7)	-	(208.5-350.7)		(178.5-308.1)		(185.2-317.8)	
WTP 90% lifetime risk	Mean	354,33	ref	384,91	9%	394,16	11%	419,19	18%
or higher	SE	30,3	ref	32,6	8%	29,7	-2%	30,6	1%
	95%CI	(295.0-413.6)	-	(321.1-448.8)		(336.0-452.3)		(359.2-479.2)	
# observations		1200		1200		1200		1200	
wSLL		-13154,64		-12816,806		-15214,620		-15009,953	

- ▶ In model (2) : higher WTA estimates and higher SEs
- ▶ In models (3-4) : lower WTA estimates and lower SEs □ (but lower effect sizes compared to case study 1)

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

troduction

ie two cas udies

heoretical amework impirical testing

Alternative ex-post calibrations

Outline

Choice certainty and deliberative thinking in discrete choice experiments

> D.A Regier, J. Sicsic, V. Watson

ntroduction

The two case studies

ramework

npirical testing

Alternative ex-post calibrations

Conclusion

The two case studies

Theoretical framework Empirical testing

Alternative ex-post calibrations

Conclusion

Summary of findings

- ▶ We have refined the current framework to analyse repondents' certainty in DCE non market valuation tasks
- We have shown that :
 - Respondents who are always certain of their choices (i) are more likely to use decision heuristics and (ii) their choices are less consistent
 - Re-weighting respondents to favor those with higher certainty variability improved:
 - 1. The precision of welfare estimates (up to +69%)
 - 2. The plausibility of welfare estimates (up to +35%)

Strengths

Theory-based evidence

Conclusion

Limitations

- 1. No revealed preference data \Rightarrow difficult to interpret the results in terms of hypothetical bias reduction
- 2. The approach works better in one setting

Results are consistent in two different settings ▶ The alternative calibration technique is simple

- Impact of the complexity of the experimental design, study population, age?
- 3. Is the calibration strategy too simple?
 - Need to assess non-linearity in the re-weighting function