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Why use math models for 
planning public health?

Model because lack of data

Some reasons to model

Don’t have sufficient epidemiological data

E.g., number of cases 20 years in future

Intervention is not yet applied “in field”

E.g., vaccine not yet licensed



Math models

Wide variety of types

Wide variation in complexity

Therefore wide variation in “usefulness”



What do policy makers want?

Answers

Often to meet/ agree with pre-defined opinions

Want “options”

Lots and lots of “what if”

 Scenarios/ answers for “their” situation

To compare/ understand answers to “intuition”

See point #1, above



What is NOT needed: A black box

With apologies to Kubrick and Clarke



Remember

Simple  =  Simplistic

The eye of the beholder is all important 

– and you are not the beholder



The costs and benefits of 
vaccinating against Lyme 
disease: A decision analysis

Meltzer MI, Dennis DT, Orloski KA

Emerg Infect Dis, 1999;5:321-328
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White footed mouse

White tailed deer

Natural hosts and reservoirs of B. burgdoferi
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Monte Carlo analysis:  Varying probabilities

Probability of LD - 0.005, 0.01, 0.03

Probability of diagnosing early LD -
0.6 - 0.9 (step: 0.1)

3 cost scenarios

Vary probability of sequelae



Results:  Cost effectiveness 

Probability of Lyme 
Disease: 0.005
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Results:  Vaccine effectiveness

Vaccine effectiveness
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Conclusions:

Public Health Policy Implications

Value in targeting by risk of LD

Value in increasing probability of 
early diagnosis of LD
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Not a pandemic
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When will the next ‘flu pandemic occur?
Time between start of pandemics

Source: Adapted from: Potter CW. J Applied Microbiol. 2001;91:572-579

Years between start of pandemics

Source: Potter; J Applied Microbiol. 2001;91:572-579



Pandemic influenza

When will the next pandemic occur?

How many deaths, hospitalizations, 
outpatients, and ill, self care?

Economic and other impacts

Implications for policy



4 resources: free software
https://www.cdc.gov/flu/pandemic-

resources/tools/index.htm

FluAid: Calculate deaths, hospitalizations, 

outpatients

FluSurge: demand hospital space

Instructions: Calculate 1968 and 1918-type 

pandemics

FluWorkLoss: calculate work days lost



Come the Pandemic: April 2009 –
April 2010

• How did models help?

• What type of models helped best?



Why is it so difficult to measure impact 
and severity of ‘flu? 

 Diagnostic tests – slow and/ or inaccurate
 During pandemic:  widespread use of RT-PCR

 Still takes time

 Rapid “bedside” diagnostics - Not accurate

 Patients often come in after peak of viral load

 Doctors can often successfully treat empirically
 No need for lab confirmed basis 

 ‘flu very similar symptoms to other respiratory diseases
 Similar treatments

 Many patients stay home and self treat (approx. 50%)
22



CDC model: Pyramid model

Source: Reed et al. Emerg Infect Dis, 2009



Near-real time estimates



Final estimates: pH1N1: U.S. (April 2009-April 
2010)

Total Rate, per 100

Median 90% Range Median

Total deaths ~12,470 8,870 - 18,300 0.004

0-17 yrs ~1,280 910 - 1,880 0.002

18-64 yrs ~9,570 6,800 - 14,040 0.005

65+ yrs ~1,620 1,160 - 2,380 0.004

Total hospitalizations ~274,000 195,000 - 403,000 0.09

0-17 yrs ~87,000 62,000 - 28,000 0.12

18-64 yrs ~160,000 114,000 - 235,000 0.08

65+ yrs ~27,000 19,000 - 40,000 0.07

Total Cases ~61 million 43 - 89 million 19.9

0-17 yrs ~20 million 14 - 28 million 27.0

18-64 yrs ~35 million 25 - 52 million 18.2

65+ yrs ~6 million 4 - 9 million 15.2

Shrestha SS, et al, CID, Pandemic Influenza supplement, in press

Source: Shrestha et al CID; 2011:52 (S1): S75-S82



RESULTS: 2009 H1N1 to seasonal influenza 
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Age (years)

Numbers per 100,000 (ranges)

Deaths Hospitalizations

Median Average Median Average

pH1N1 1990 to 1999 pH1N1 1979 to 2001

0-17 1.6 0.2 109.2 15.8

(1.2 – 2.4) (0.03 – 0.4) (77.8 – 160.2) (3.6 – 32.3)

18 to 64 4.7 0.4 78 20.8

(3.3 – 6.8) (0.07 – 1.0) (55.6 – 114.6) (4.8 – 42.4)

≥65 3.8 22.1 63.2 282

(2.7 – 5.5) (3.8 – 54.1) (45.1 – 92.8) (64.8 – 575.2)

All 3.8 3.1 83.8 52.4

(2.7 – 5.6) (0.5 – 7.6) (59.7 – 123.0) (12.1 – 107.0)
Source: Shrestha et al CID; 2011:52 (S1): S75-S82
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CDC Emergency Operations Center

Photo by Spencer Lowell for TIME magazine 
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Initial Questions from Leadership 

Modeling Helps Inform 

 Forecasting: How many cases will there be at any 

point and in total (with frequent updates)?

What would be the impact of interventions?

When will the epidemic end?

 With an intervention

 Without an intervention
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Modeling Projections of Cases With 
and Without Interventions

MMWR Surveill Summ 2014;63 Suppl 3:1-14. Corrected for potential
underreporting by multiplying reported cases by a factor of 2.5.

Liberia: August 2014 Estimates 
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Response Time Matters –
Cases Could Triple For Every Month of Inaction

MMWR Surveill Summ 2014;63 Suppl 3:1-14. Not corrected for potential 
underreporting.
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Estimates Compared to Actual Reported Cases
With and Without Correction for Underreporting

MMWR Surveill Summ 2014;63 Suppl 3:1-14. 
WHO Situation Report  21 January 2015. 

Liberia Estimates Based on August 2014 Data

Blue vertical 
bar represents 
correction for 
underreporting 
by factor of 
2.5.

Corrected for 
Underreporting

Uncorrected

Reported cases, 
~8,500 through mid-January, 
were within 23% of model estimates.
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Single most important number produced by 
modeling

MMWR Surveill Summ 2014;63 Suppl 3:1-14. 

70%

“The epidemic begins to decrease and eventually end if approximately 

70% of persons with Ebola are in medical care facilities or Ebola 

treatment units (ETUs) or, when these settings are at capacity, in a 

non-ETU setting such that there is a reduced risk for disease 

transmission (including safe burial when needed).”
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Reliable goal/ target

Frieden & Damon; Emerg Infect Dis 2015; 21:1897-1905
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Rainisch G, Shankar M, Wellman M, et al. Emerg Infect Dis. 2015 Mar
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Impact: Is it working?

MMWR: 2015:  64: 64-69.
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Modeling’s Major Contributions During 

Emergency Response

 Estimation of possible size of outbreak before large 

amounts of data are available 

 Assessment of impact of interventions

 Identification of key data needs

 Value of what is known

 Value of what is not known

 Prioritize data collection efforts
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What Is Needed For Modeling To Be Of Use 
To Leadership In A Response

 Accessible to leadership

 Best if modeling/modelers are on site

 Need for lots of “back and forth” to clarify data and the question

 Publication NOT the main goal

 Fast and frequent updates

 Available fast enough to help guide policy decisions

 Can be rapidly and easily updated when situation changes or 

more data are available

 Simple models

 Has to be able to be easily conveyed to decision and policy makers

 Spreadsheets or equivalent – post or make widely available



Martin’s 10 simple rules for 
keeping models simple

Rule 1: Identify primary audience

Who exactly needs/ is asking for info?

Rule 2: Identify the #1 question they want 
answered

Rule 3: Build a model that answers the 
question for the audience

Build one model to answer one question



Rule 4: Clearly identify biological components 
in model

Epidemiology, clinical, medical technology

Rule 5: Clearly identify econ and cost 
components

E.g., costs of intervention

Martin’s 10 simple rules for 
keeping models simple



Rule 6: Do lots of sensitivity analysis

Goal: identify 1-3 inputs “driving” result

Multivariable sensitivity is a must

Rule 7: Spend lots of time working on 
description of results

Quality graphics and tables a “must”

Martin’s 10 simple rules for 
keeping models simple



Rule 8: Always make sure that every input 
variable is listed and source described

Table 1 should be list of inputs: names, values, 
sources

Rule 9: Always list and discuss limitations

Martin’s 10 simple rules for 
keeping models simple



Rule 10: be prepared to explain over and over 
again

Think of innovative ways to have simplified 
versions of model

E.g., spreadsheet versions (FluAid, FluSurge, 
Maxi-Vac)

Finally: Good luck – always remain tenacious

Martin’s 10 simple rules for 
keeping models simple


