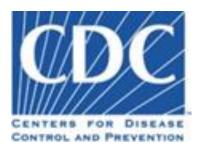
Simple models for public health policy making

Martin Meltzer, Ph.D., MS Division of Preparedness and Emerging Infections Centers for Disease Control and Prevention (CDC) qzm4@cdc.gov

The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention



Why use math models for planning public health?

➤ Model because lack of data

Some reasons to model

- Don't have sufficient epidemiological data
 - E.g., number of cases 20 years in future
- Intervention is not yet applied "in field"
 - E.g., vaccine not yet licensed

Math models

➤ Wide variety of types

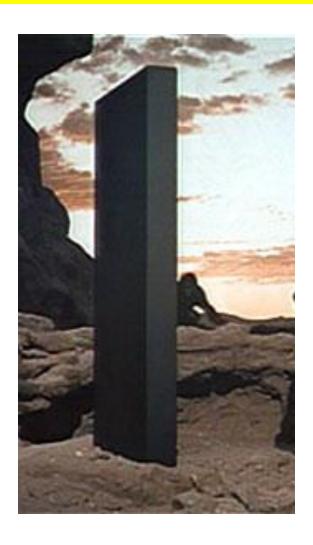
➤ Wide variation in complexity

> Therefore wide variation in "usefulness"

What do policy makers want?

- > Answers
 - ➤ Often to meet/ agree with pre-defined opinions
- ➤ Want "options"
 - > Lots and lots of "what if"
- Scenarios/ answers for "their" situation
- > To compare/ understand answers to "intuition"
 - > See point #1, above

What is NOT needed: A black box



With apologies to Kubrick and Clarke

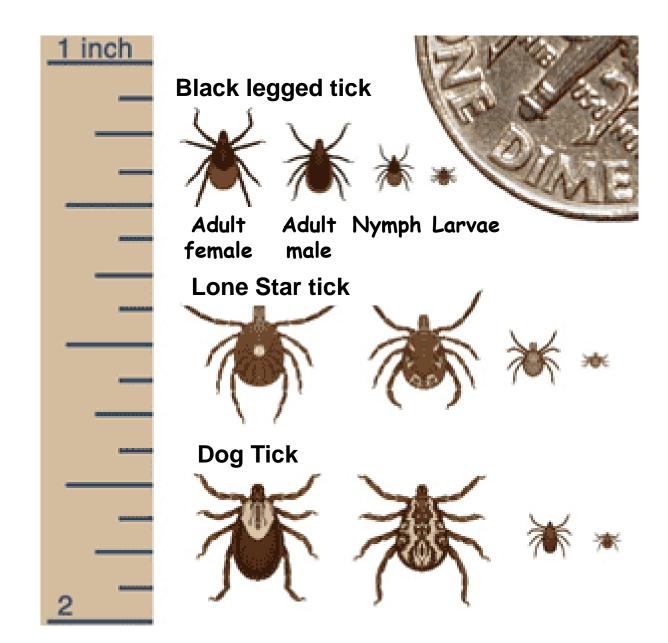
Remember

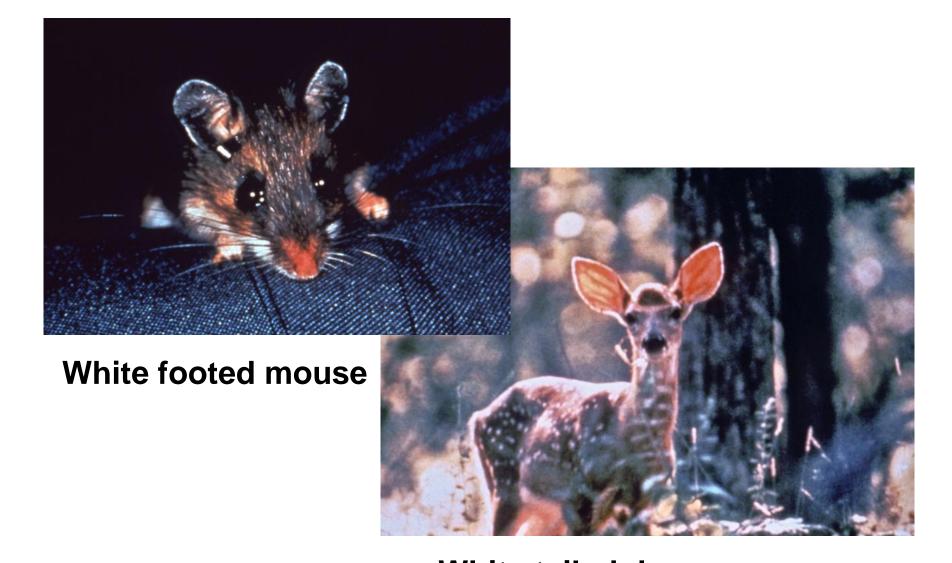
The eye of the beholder is all important

and you are not the beholder

The costs and benefits of vaccinating against Lyme disease: A decision analysis

Emerg Infect Dis, 1999;5:321-328

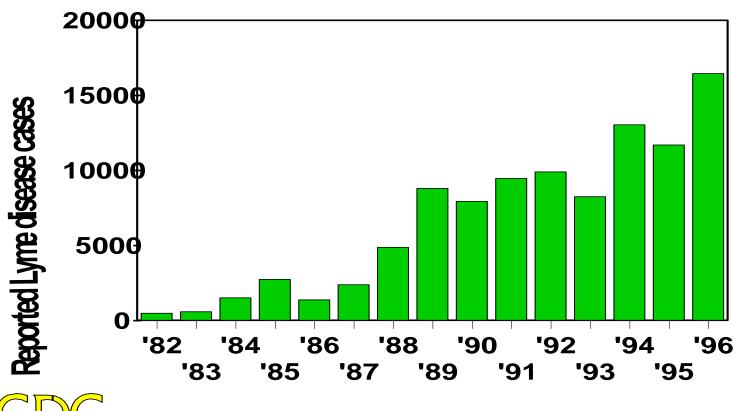




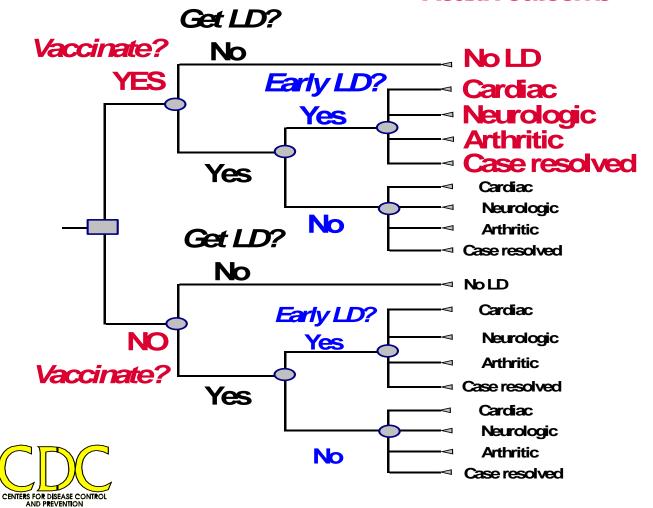
White tailed deer

Natural hosts and reservoirs of *B. burgdoferi*

Reported Lyme disease cases: 1982-96



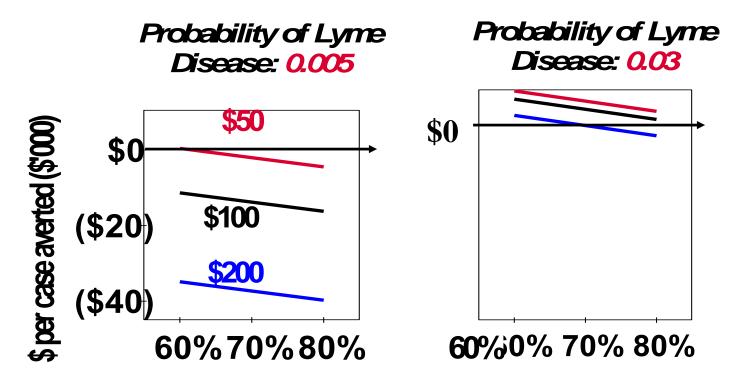
Health outcome



Monte Carlo analysis: Varying probabilities

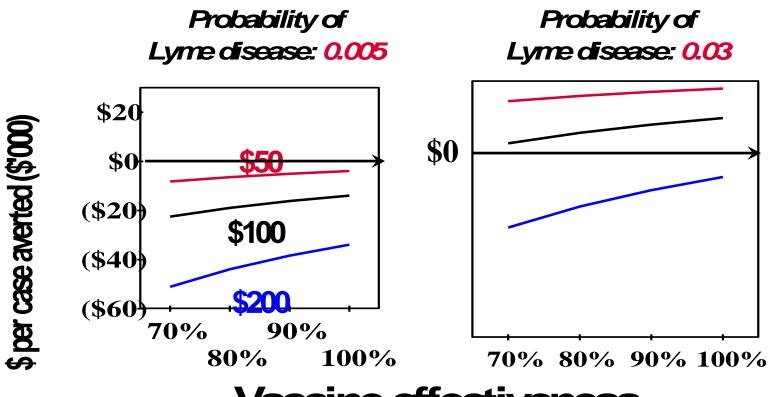
- Probability of LD 0.005, 0.01, 0.03
- Probability of diagnosing early LD-0.6 - 0.9 (step: 0.1)
- ► 3 cost scenarios
- Vary probability of sequelae

Results: Cost effectiveness



Probability of early diagnosis and treatment of Lyme disease

Results: Vaccine effectiveness



Conclusions:

- Public Health Policy Implications
 - Value in targeting by risk of LD
 - Value in increasing probability of early diagnosis of LD

Really Simple Models to Assess Novel H1N1 Impact

Martin Meltzer, Ph.D., MS
Division of Preparedness and Emerging Infections
Centers for Disease Control and Prevention (CDC)
qzm4@cdc.gov

When will the next 'flu pandemic occur? Time between start of pandemics

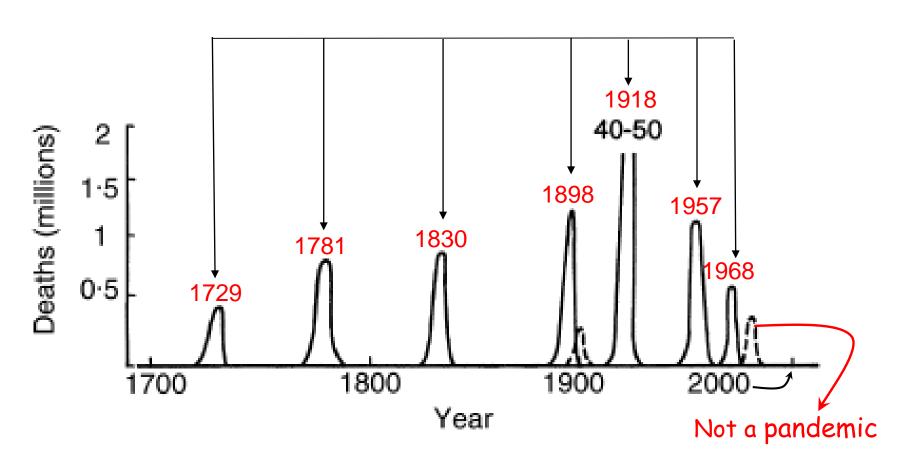


Fig. 2 History of influenza pandemics 1700–2000. Not to exact scale

Source: Potter; J Applied Microbiol. 2001;91:572-579

Pandemic influenza

- ➤ When will the next pandemic occur?
- How many deaths, hospitalizations, outpatients, and ill, self care?
- > Economic and other impacts
- > Implications for policy

4 resources: free software

https://www.cdc.gov/flu/pandemicresources/tools/index.htm

- FluAid: Calculate deaths, hospitalizations, outpatients
- FluSurge: demand hospital space
- ➤ Instructions: Calculate 1968 and 1918-type pandemics
- FluWorkLoss: calculate work days lost

Come the Pandemic: April 2009 - April 2010

How did models help?

What type of models helped best?

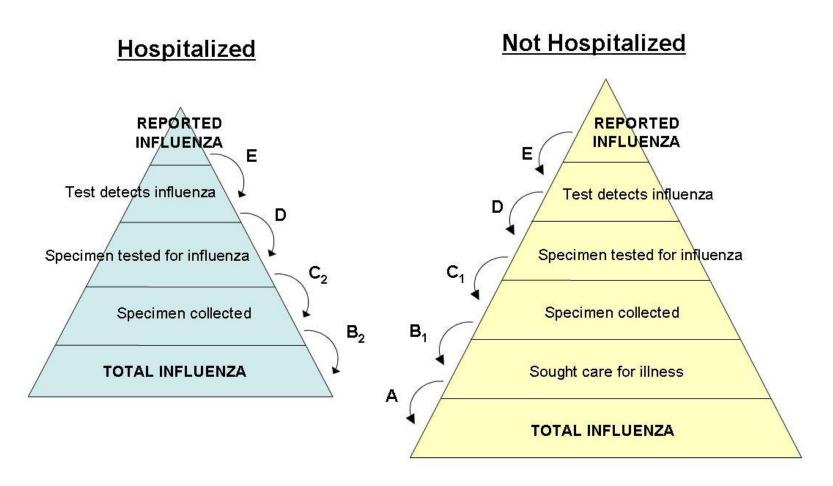
Swine Influenza A (H1N1) Infection in Two Children --- Southern California, March--April 2009

Why is it so difficult to measure impact and severity of 'flu?

- Diagnostic tests slow and/ or inaccurate
 - > During pandemic: widespread use of RT-PCR
 - Still takes time
 - Rapid "bedside" diagnostics Not accurate
- Patients often come in after peak of viral load
- > Doctors can often successfully treat empirically
 - No need for lab confirmed basis
- 'flu very similar symptoms to other respiratory diseases
 - > Similar treatments

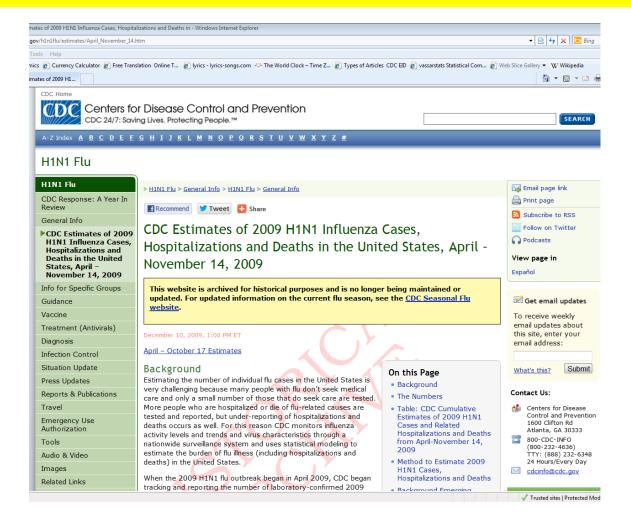
 \triangleright Many patients stay home and self treat (approx. 50%) $_{22}$

CDC model: Pyramid model



Source: Reed et al. Emerg Infect Dis, 2009

Near-real time estimates



Final estimates: pH1N1: U.S. (April 2009-April 2010)

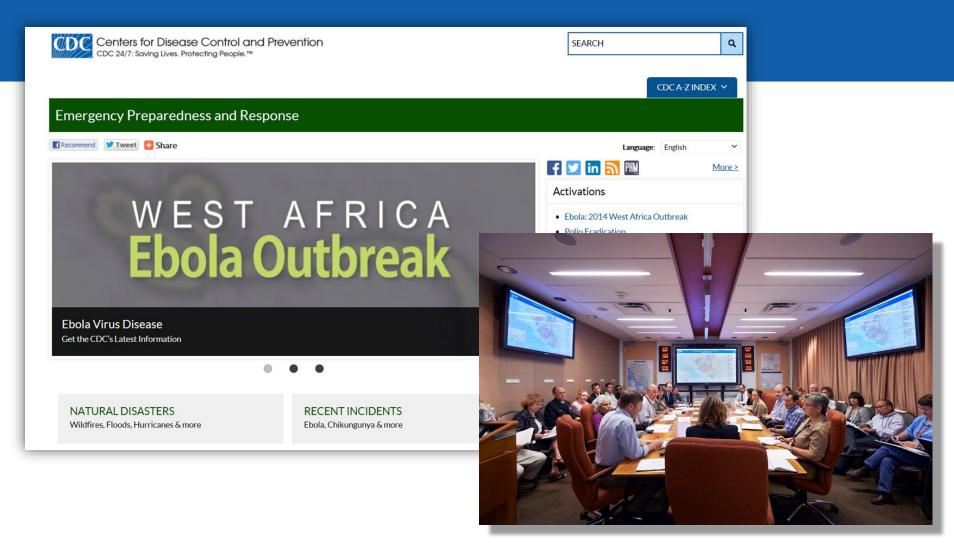
		Rate, per 100	
	Median	90% Range	Median
Total deaths	~12,470	8,870 - 18,300	0.004
0-17 yrs	~1,280	910 - 1,880	0.002
18-64 yrs	~9,570	6,800 - 14,040	0.005
65+ yrs	~1,620	1,160 - 2,380	0.004
Total hospitalizations	~274,000	195,000 - 403,000	0.09
0-17 yrs	~87,000	62,000 - 28,000	0.12
18-64 yrs	~160,000	114,000 - 235,000	0.08
65+ yrs	~27,000	19,000 - 40,000	0.07
Total Cases	~61 million	43 - 89 million	19.9
0-17 yrs	~20 million	14 - 28 million	27.0
18-64 yrs	~35 million	25 - 52 million	18.2
65+ yrs	~6 million	4 - 9 million	15.2

Source: Shrestha et al CID; 2011:52 (S1): S75-S82

RESULTS: 2009 H1N1 to seasonal influenza

	Numbers per 100,000 (ranges)				
	Deaths		Hospitalizations		
	Median	Average	Median	Average	
Age (years)	pH1N1	1990 to 1999	pH1N1	1979 to 2001	
0-17	1.6 (1.2 – 2.4)	0.2 (0.03 – 0.4)	109.2 (77.8 – 160.2)	15.8 (3.6 – 32.3)	
18 to 64	4.7 (3.3 – 6.8)	0.4 (0.07 – 1.0)	78 (55.6 – 114.6)	20.8 (4.8 – 42.4)	
≥65	3.8 (2.7 – 5.5)	22.1 (3.8 – 54.1)	63.2 (45.1 – 92.8)	282 (64.8 – 575.2)	
AII	3.8 (2.7 – 5.6)	3.1 (0.5 – 7.6)	83.8 (59.7 – 123.0)	52.4 (12.1 – 107.0)	

Source: Shrestha et al CID; 2011:52 (S1): S75-S82

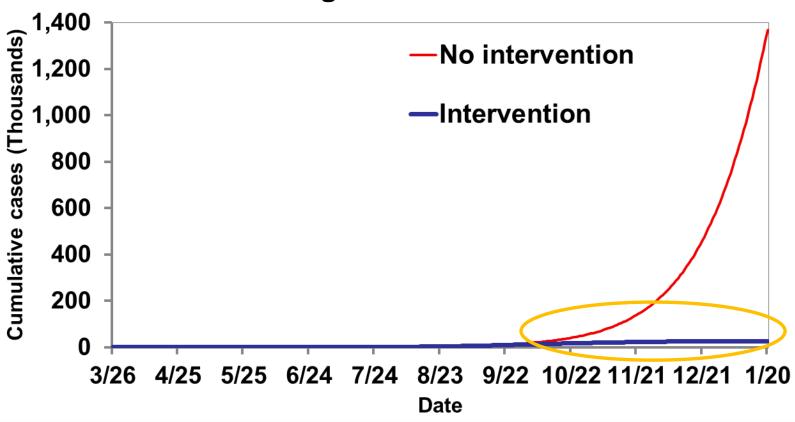


CDC Emergency Operations Center

Initial Questions from Leadership Modeling Helps Inform

- □ Forecasting: How many cases will there be at any point and in total (with frequent updates)?
- What would be the impact of interventions?
- When will the epidemic end?
 - With an intervention
 - Without an intervention

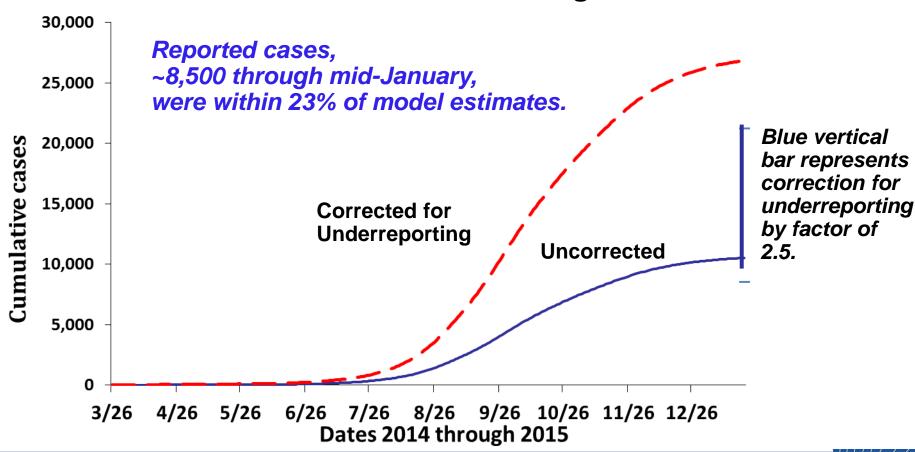
Modeling Projections of Cases With and Without Interventions



Response Time Matters – Cases Could Triple For Every Month of Inaction

Estimates Compared to Actual Reported Cases With and Without Correction for Underreporting

Liberia Estimates Based on August 2014 Data

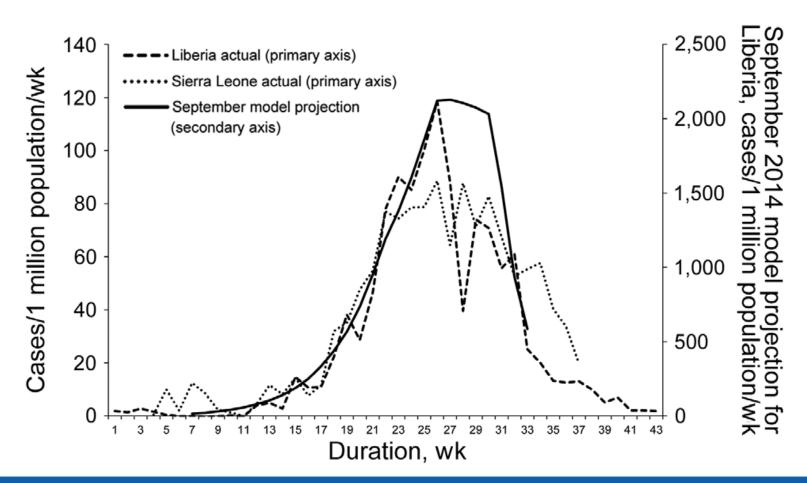


Single most important number produced by modeling

70%

"The epidemic begins to decrease and eventually end if approximately 70% of persons with Ebola are in medical care facilities or Ebola treatment units (ETUs) or, when these settings are at capacity, in a non-ETU setting such that there is a reduced risk for disease transmission (including safe burial when needed)."

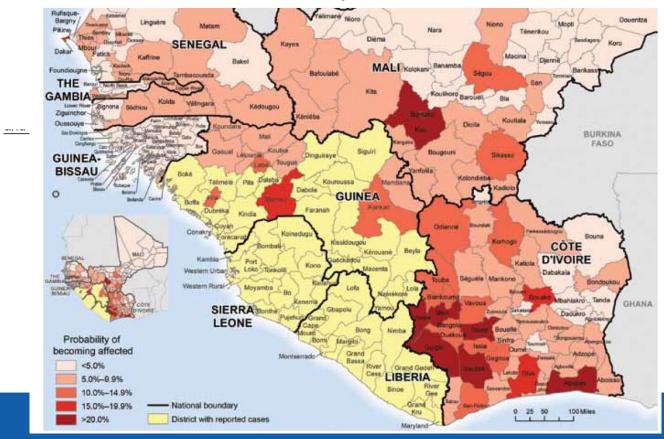
Reliable goal/ target



DISPATCHES

Regional Spread of Ebola Virus, West Africa, 2014

Gabriel Rainisch, Manjunath Shankar, Michael Wellman, Toby Merlin, Martin I. Meltzer



Impact: Is it working?

Number of Ebola Cases Averted

The cumulative number of estimated cases during March 27–October 31, 2014, based on model assumptions, was 6,218, compared with 6,525 cumulative cases reported in Liberia (6). If no patients had been hospitalized in ETUs starting on September 23, 2014, (scenario 1), there would have been an estimated additional 2,244 cases by October 31, 2014 (Figure, Table 2). If no patients had been placed into CCCs or equivalent community settings with reduced risk for transmission, there would have been an estimated additional 4,487 cases by October 31, 2014. If no patients were placed into either ETUs or CCCs or the equivalent settings with reduced risk for Ebola transmission (scenario 3), there would have been an estimated additional 9,097 cases by October 31, 2014 (Figure).

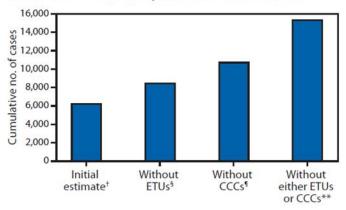
TABLE 1. Percentage of Ebola cases in each category of patient care, by three scenarios used to estimate the impact if there were no Ebola treatment units (ETUs) and community care centers (CCCs)* — Liberia, September 23–October 31, 2014

Patient care category	Initial estimates of % of patients by category [†]	% estimates if no ETUs (scenario 1)	% estimates if no CCCs (scenario 2)	% estimates if no ETUs or CCCs (scenario 3)
ETUs	20	0	20	0
CCCs	35	35	0	0
At home without effective isolation§	45	65	80	100

^{*}CCCs or equivalent community settings with a reduced risk for Ebola

or equivalent settings, an estimated 165 cases would have been averted (Table 2).

FIGURE. Estimates of the cumulative number of Ebola cases with and without Ebola treatment units (ETUs) and community care centers (CCCs)* — Liberia, September 23–October 31, 2014



* CCCs or equivalent community settings with a reduced risk for Ebola transmission (including safe burial and community-based programs to change human behavior to reduce contact with patients).

[†] The initial estimate was calculated by fitting the EbolaResponse model to cumulative cases in Liberia for the period March 27–November 15, 2014. From this fit, 6,218 cumulative cases were estimated to have occurred by October 31, 2014. During September 23–October 31, 2014, it was calculated that 20% of Ebola patients were in ETUs, 35% were in CCCs or equivalent community settings with a reduced risk for Ebola transmission (including safe burial), and, 45% were at home without effective isolation, resulting in an increased risk for Ebola transmission (including unsafe burials).

§ The impact if there were no ETUs was calculated by moving the 20% of Ebola

MMWR: 2015: 64: 64-69.

Modeling's Major Contributions During Emergency Response

- Estimation of possible size of outbreak before large amounts of data are available
- Assessment of impact of interventions
- Identification of key data needs
 - Value of what is known
 - Value of what is not known
 - Prioritize data collection efforts

What Is Needed For Modeling To Be Of Use To Leadership In A Response

Accessible to leadership

- Best if modeling/modelers are on site
- Need for lots of "back and forth" to clarify data and the question
- Publication NOT the main goal

Fast and frequent updates

- Available fast enough to help guide policy decisions
- Can be rapidly and easily updated when situation changes or more data are available

Simple models

- Has to be able to be easily conveyed to decision and policy makers
- Spreadsheets or equivalent post or make widely available

- > Rule 1: Identify primary audience
 - ➤ Who <u>exactly</u> needs/ is asking for info?
- ➤ Rule 2: Identify the #1 question they want answered

- ➤ Rule 3: Build a model that answers the question for the audience
 - ➤ Build one model to answer one question

- ➤ Rule 4: Clearly identify biological components in model
 - Epidemiology, clinical, medical technology
- ➤ Rule 5: Clearly identify econ and cost components
 - E.g., costs of intervention

- > Rule 6: Do lots of sensitivity analysis
 - ➤ Goal: identify 1-3 inputs "driving" result
 - ➤ Multivariable sensitivity is a must
- ➤ Rule 7: Spend lots of time working on description of results
 - ➤ Quality graphics and tables a "must"

- ➤ Rule 8: Always make sure that every input variable is listed and source described
 - Table 1 should be list of inputs: names, values, sources

> Rule 9: Always list and discuss limitations

- ➤ Rule 10: be prepared to explain over and over again
 - Think of innovative ways to have simplified versions of model
 - E.g., spreadsheet versions (FluAid, FluSurge, Maxi-Vac)

Finally: Good luck – always remain tenacious

